Прямоугольный параллелепипед — как нарисовать параллелепипед

03.09.2019

Учитель показывает и раздает на каждый стол модели прямоугольных параллелепипедов.

Прямоугольный параллелепипед

Цели урока:

1) Обучающая: формировать представления о прямоугольном параллелепипеде и кубе, о свойствах граней и ребер прямоугольного параллелепипеда, куба; ввести понятия грань, вершина, ребро, измерения, развертка.

2) Развивающая: создать условия для развития пространственного мышления; развивать умения сравнения и обобщения.

3) Воспитывающая: содействовать воспитанию интереса к математике и развитию культуры речи.

Тип урока: изучение нового материала с первичным закреплением.

План урока:

1. Организационный этап.

2. Актуализация опорных знаний.

3. Этап получения новых знаний.

4. Этап обобщения и закрепления нового материала.

6. Заключительный этап.

Ход урока:

1. Организационный этап.

Здравствуйте. Прежде чем мы приступим к уроку, хотелось бы узнать, как вы настроены к работе на уроке.

2. Актуализация опорных знаний:

Учитель показывает и раздает на каждый стол модели прямоугольных параллелепипедов.

­­- Кто знает, как правильно называются эти предметы в математике?

— Нарисуйте прямоугольный параллелепипед на доске.

Откройте тетради и запишите число и тему нашего урока.

3. Этап получения знаний:

Тема нашего урока «Прямоугольный параллелепипед». Сегодня на уроке мы узнаем, какую фигуру называют прямоугольным параллелепипедом. Рассмотрим, какими измерениями обладает данная фигура, а также рассмотрим его некоторые свойства.

Нас окружают тела. Они имеют самую разнообразную форму. В математике, прежде всего, изучают некоторый определенный набор тел стандартной формы. Посмотрите на экран — это такие фигуры как призма, цилиндр, шар, пирамида и конус. Каждую из этих фигур мы рассмотрим в будущем, а сегодня же мы остановимся на рассмотрении призмы, или конкретно — прямоугольного параллелепипеда.

Представление о прямоугольном параллелепипеде дают, например, спичечный коробок, холодильник, шкаф и другие тела. Школьный кабинет, в котором мы сейчас с вами находимся, также имеет форму прямоугольного параллелепипеда. Обратите внимание, на экране на первом рисунке изображен прямоугольный параллелепипед, а на втором рисунке — его математическое представление — изображение.

Поверхность прямоугольного параллелепипеда состоит из 6 прямоугольников, каждый из которых называют гранью прямоугольного параллелепипеда. Стороны этих прямоугольников называются ребрами, а вершины прямоугольников — вершинами прямоугольного параллелепипеда. Заметьте, прямоугольный параллелепипед имеет 6 граней, 12 ребер и 8 вершин.

Посмотрите, на экране изображен прямоугольный параллелепипед, его противоположные грани не имеют общих точек, они равны между собой. Запомните, противоположные грани прямоугольного параллелепипеда равны. Нижнюю и верхнюю грани прямоугольного параллелепипеда называют его основаниями, остальные грани — боковыми гранями. Названия «нижняя грань», «верхняя грань», «боковая грань» условны. Например, на экране изображен один и тот же параллелепипед, а его верхние грани на рисунках различны.

В каждой вершине прямоугольного параллелепипеда сходятся три ребра. Такие ребра называют длиной, шириной и высотой прямоугольного параллелепипеда. Вместе их называют измерениями параллелепипеда. Названия «длина», «ширина» и «высота» также условны. На рисунке изображен один и тот же прямоугольный параллелепипед, а его высотой, например, названы разные ребра.

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом. Все грани куба — равные между собой квадраты. Поэтому поверхность куба состоит из 6 равных квадратов.

Тело имеет разные свойства. Одним из них является масса, которую находят с помощью весов. Другим свойством тела является площадь поверхности. Обозначим измерения прямоугольного параллелепипеда таким образом: a — его длина, b — ширина и c — высота. Тогда с помощью этих обозначений запишем формулу площади поверхности прямоугольного параллелепипеда: S=2(ab+ac+bc), что видно также из развертки поверхности прямоугольного параллелепипеда на плоскость.

Если ребро куба равно а, то его поверхность состоит из 6 одинаковых квадратов, каждый из которых имеет сторону длиной а. Поэтому площадь поверхности куба можно записать так: .

4. Этап обобщения и закрепления нового материала.

Итак, сделаем основные выводы:

Сегодня на уроке мы узнали, какую фигуру называют прямоугольным параллелепипедом. Рассмотрели, какими измерениями обладает данная фигура, а также рассмотрели его свойства. А также познакомились с кубом и его особенностями.

Для закрепления материала ответьте на вопросы:

Приведите примеры предметов, имеющих форму прямоугольного параллелепипеда. Сколько граней имеет прямоугольный параллелепипед? Какую форму имеют грани прямоугольного параллелепипеда? Сколько ребер у прямоугольного параллелепипеда? Какими измерениями обладает прямоугольный параллелепипед? Сколько у него вершин? Какую фигуру называют кубом?

5. Рефлексия.

Хотелось бы узнать, понравился ли вам урок? Что было не понятным на уроке? Что еще бы вы хотели узнать?

6. Домашнее задание: § 4 п. 20 (№ 793, 813, 814)

Математический диктант (в скобках 2-ой вариант)

№ 1. Сколько граней (измерений) имеет прямоугольный параллелепипед?

№ 2. Закончите предложение: «Каждая грань прямоугольного параллелепипеда имеет форму …» («Куб — прямоугольный параллелепипед, у которого …»).

№ 3. Сколько вершин (ребер) имеет прямоугольный параллелепипед)

№ 4. Запишите формулу площади поверхности прямоугольного параллелепипеда (куба).

Взаимопроверка. Выставление оценок.

Источник: http://videouroki.net/blog/pryamougolnyy-parallelepiped.html

Как начертить параллелепипед

как нарисовать параллелепипед

Инструкция

У вас возникло затруднение в решении геометрической задачи, связанной с параллелепипедом. Принципы решения таких задач, основанные на свойствах параллелепипеда, изложены в простой и доступной форме. Понять – значит решить. Подобные задачи больше не…

Параллелепипед — объемная фигура, одна из разновидностей призм, в основании которой лежит четырехугольник — параллелограмм, а все остальные грани также образованы данным видом четырехугольников. Площадь боковой поверхности параллелепипеда найти…

Во многих учебниках встречаются задания, связанные с построением сечений различных геометрических фигур, в том числе параллелепипедов. Для того чтобы справиться с такой задачей, следует вооружиться некоторыми знаниями. Вам понадобится- бумага;-…

Параллелепипед — это призма (многогранник), в основании которой лежит параллелограмм. У параллелепипеда — шесть граней, тоже параллелограммы. Различают несколько типов параллелепипеда: прямоугольный, прямой, наклонный и куб. Инструкция1Прямым…

Форму параллелепипеда имеют многие реальные объекты. Примерами являются комната и бассейн. Детали, имеющие такую форму — не редкость и в промышленности. По этой причине нередко возникает задача нахождения объема данной фигуры.…

Масса задач составлена на основе свойств многогранников. Грани объёмных фигур, как и конкретные точки на них, лежат в разных плоскостях. Если одну из таких плоскостей под определённым углом провести сквозь параллелепипед, то часть плоскости, лежащая…

Прямоугольным называется такой параллелепипед, все шесть граней которого являются прямоугольниками. Формула расчета площади его поверхности очень проста: S = 2(ab + bc + ac), где a, b и c – длины ребер. Инструкция1Для начала вычислите площади трех…

Правила геометрии, выраженные словами и формулами, зачастую трудны для понимания. Если же их перевести в сферу материального, сделать видимыми, школьники быстрее разберутся в любых теоремах и аксиомах. Помочь в этом могут макеты геометрических…

Мебель нередко становится фоном на рисунках, на первом плане которых изображены более интересные объекты – люди, животные или хотя бы натюрморты. Однако ошибка, сделанная при изображении второстепенного стола или дивана, может испортить впечатление…

Источник: http://progurukak.ru/nauka/matematika/196558-kak-nachertit-parallelepiped.html

Прямоугольный параллелепипед. Площадь поверхности прямоугольного параллелепипеда

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

как нарисовать параллелепипед

На данном уроке мы узнаем, что такое прямоугольный параллелепипед, его свойства. Кроме того, будет выведена формула площади поверхности параллелепипеда, решена задача с применением данной формулы.

Введение

Что общего у кирпича, коробки из-под телевизора и дома? (Рис. 1.)
как нарисовать параллелепипед

Рис. 1. Кирпич, дом и коробка из-под телевизора

Можно ли понять что-то про них такое, что относится к каждому из этих предметов?

В этом и состоит задача математики: изучать нечто общее у совершенно разных вещей.

Например, мяч и глобус – шары и Земля – почти шар. (Рис. 2.)

как нарисовать параллелепипедРис. 2. Мяч и глобус

Но вернемся к кирпичу, зданию и коробке. Как их возможно описать?

Это фигуры, ограниченные плоскостями (рис. 3). Каждая грань является прямоугольником. Все такие фигуры называются прямоугольными параллелепипедами.как нарисовать параллелепипед
Рис. 3. Грани прямоугольного параллелепипеда

По названию видно, что бывают и непрямоугольные параллелепипеды. Действительно, гранями параллелепипеда могут быть не только прямоугольники, а и произвольные параллелограммы (рис. 4).

как нарисовать параллелепипед

Рис. 4. Произвольный параллелограмм

Так же, как из прямоугольника можно сделать обычный параллелограмм, так и из прямоугольного параллелепипеда легко сделать «косой параллелепипед» (рис. 5).

как нарисовать параллелепипед

Рис. 5. Косой параллелепипед

Как начертить прямоугольный параллелепипед?

Сначала необходимо нарисовать ближнюю к нам сторону, стенку, грань (это прямоугольник) затем верхнюю. Рисовать надо ее чуть-чуть под углом, как будто бы смотришь на нее немного сбоку.

Теперь необходимо нарисовать правую грань. Так как все грани – это прямоугольники, то нужно следить, чтобы противоположные стороны этих граней были параллельны друг другу.

Понятно, что, глядя на настоящую объемную фигуру, невозможно увидеть ее сразу со всех сторон.

Остальные, «невидимые», стороны тоже нужны. Поэтому договорились те линии, которые не видны, рисовать пунктиром. Необходимо дорисовать их, соблюдая параллельность. (Рис. 6.)

как нарисовать параллелепипед

Рис. 6. Чертеж прямоугольного параллелепипеда

Все, изображение прямоугольного параллелепипеда готово.

Элементы прямоугольного параллелепипеда

У любого прямоугольного параллелепипеда есть 8 вершин. Зачастую их обозначают , , , снизу, , , , – сверху. (Рис. 7.)

как нарисовать параллелепипед

Рис. 7. Прямоугольный параллелепипед

6 прямоугольников, вершины которых совпадают с вершинами параллелепипеда, называются гранями:

На рисунке они не все выглядят как прямоугольники, это происходит потому что, мы смотрим на них не прямо, а под углом.

Еще есть отрезки , , и так далее. Они являются сторонами прямоугольников, то есть граней, и называются ребрами. У любого параллелепипеда 12 ребер.

Итак, у любого параллелепипеда всегда 8 вершин, 6 граней и 12 ребер.

Многогранники. Теорема Эйлера для многогранников.

Разберемся подробнее с элементами, о которых мы поговорили: гранями, ребрами, вершинами.

Отрезок ограничен точками. Граница области на плоскости – линия или несколько отрезков.

Из отрезков и их границ (точек) на плоскости мы собираем многоугольники (треугольники, четырехугольники, … 100-угольники).

В пространстве имеем плоскости, их границы – ребра, кроме того, у ребер тоже есть граница – точки под названием вершины.

Из них можно собирать пространственные аналоги многоугольников – многогранники (рис. 1). Параллелепипед – один из примеров многогранников.

как нарисовать параллелепипед

Рис. 1. Отрезок, многоугольник и многогранник

Самый «маленький» многогранник – треугольная пирамида (или тетраэдр) (рис. 2), по аналогии с самым «маленьким» многоугольником – треугольником.

как нарисовать параллелепипед

Интересный факт: в любом многограннике выполняется следующее свойство, где – количество граней, – количество вершин, – количество ребер.

1) Тетраэдр: 4 вершины, 4 грани и 6 ребер.

как нарисовать параллелепипед

2) Параллелепипед: 8 вершин, 6 граней и 12 ребер.

как нарисовать параллелепипед

Рис. 4. Параллелепипед

3) Пятиугольная призма: 10 вершин, 7 граней и 15 ребер

как нарисовать параллелепипед

Рис.5. Пятиугольная призма

Количество вершин и граней вместе всегда на 2 больше, чем количество ребер. И это свойство выполняется для всех многогранников. Это свойство сформулировал Леонард Эйлер в свое время. Свойство так и назвали: Теорема Эйлера.

, где: – количество граней, – количество вершин, – количество рёбер.

Грани прямоугольного параллелепипеда

У прямоугольного параллелепипеда все грани (их 6) являются прямоугольниками. Все ли эти прямоугольники разные? Конечно, нет.

Держа коробку в руках, можно заметить, что противоположные грани равны, то есть это совершенно одинаковые прямоугольники.

Например, передняя грань равна задней. Точно так же равны друг другу верхняя и нижняя грани, левая и правая.

А есть ли равные ребра?

Да, конечно, можно увидеть, что вертикальные ребра, их 4, все равны друг другу. Аналогично есть еще две четверки равных ребер.

Площадь поверхности прямоугольного параллелепипеда

Вопрос: если нужно склеить такой параллелепипед из бумаги, то сколько бумаги необходимо? И как необходимо клеить прямоугольный параллелепипед или другой многогранник?

Сначала нужно сделать развертку прямоугольного параллелепипеда (рис. 8).

как нарисовать параллелепипед

Рис. 8. Развертка прямоугольного параллелепипеда

Уже видно на ней 6 граней, попарно равных друг другу. Если согнуть ее по линиям, то получится прямоугольный параллелепипед.

Площадь этой развертки – это то количество бумаги, которое необходимо. Она называется площадью поверхности. Очевидно, она равна сумме площадей всех шести граней.

Теперь можно вывести формулу площади поверхности прямоугольного параллелепипеда.

Три ребра, исходящих из одной вершины, могут иметь разную длину. Пусть они будут обозначены , , и . (Рис. 9.)

как нарисовать параллелепипед

Рис. 9. Прямоугольный параллелепипед со сторонами , , и

Все остальные ребра равны какому-нибудь из этих значений. Необходимо найти площади всех граней и сложить.

Площадь нижней грани равна , так это прямоугольник. Верхняя грань точно такая же, ее площадь тоже равна . Правая и левая грани имеют площади каждая. Передняя и задняя – каждая.

Складывая все эти площади, получаем площадь поверхности:

Задача

Сколько необходимо краски для покраски картонной коробки, если высота, ширина и длина коробки составляют 20, 30 и 60 см соответственно? Расход краски составляет 1 г на каждые 100 см 2 .

как нарисовать параллелепипед

Какую площадь надо покрасить? Очевидно, это площадь поверхности коробки, ведь красить мы будем ее поверхность.

Найдем площадь поверхности коробки. Коробка – это прямоугольный параллелепипед. Площадь поверхности – это сумма площадей всех граней, причем грани попарно равны.

Расход краски – 1 г на 100 см 2 . Чтобы найти необходимое количество краски, делим общую площадь на 100:

Получается, что необходимо 72 грамма краски, чтобы покрасить коробку.

Вывод

На данном уроке был изучен прямоугольный параллелепипед, его основные свойства и элементы. Кроме того, была выведена формула его поверхности и решена задача на применение данной формулы.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. – Гимназия, 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс – ЗШ МИФИ, 2011.

5) Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. – ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. – Просвещение, 1989.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

2. Портал «Первое сентября» (Источник)

3. Портал «Презентации для школьников» (Источник)

Домашнее задание

1. Сколько краски надо, чтобы покрасить кубик с высотой, шириной и длиной 20, 45 и 60 см соответственно? Расход краски составляет 5 грамм на каждые 100 см 2 .

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Источник: http://interneturok.ru/lesson/matematika/5-klass/bplowadi-i-obyomyb/pryamougolnyy-parallelepiped-ploschad-poverhnosti-pryamougolnogo-parallelepipeda

Как нарисовать параллелепипед? — Мы поможем вам

Вам необходимо в срочном порядке найти ответ на вопрос Как нарисовать параллелепипед? Вы попали по адресу!

Ниже вы можете скачать ответ на свой вопрос в 3 видах — .doc, .pdf и .avi
Успехов вам!

как нарисовать параллелепипедкак нарисовать параллелепипедкак нарисовать параллелепипед

Отзывы

Подскажите пожалуйста, у меня там номер телефона ввести просит, так и должно быть? Боюсь просто что могут снять денег за скачку документа

Как всегда, кто то с луны свалился, нас же предупреждали уже об этом — это просто новая защита от поисковых роботов, подтверждение что ты реальный человек, вот и все, деньги за это не снимают

Точно, спасибо большое, реально затупил что то, подтвердился по телефону, признаться честно боялся что это развод какой нибудь, но все оказалось нормально, дали ссылку на файл, я скачал все супер, денежки все целы! ))

Благодарю, очень ценный материал, все пункты разложены по полочкам, полностью структурированный вопрос на ответ Как нарисовать параллелепипед, цены вам нету.

А в теме как правильно выбрать сабвуфер? спамер завелся. смотрите какую чушь пишет — «Почти что в упор заглянула в сморщенное словно никакого чародейства, доступного ощущениям выпускника факультета малефицистики. Вся твоя мужская хотелось ему оказаться себе, чтобы выслушать рассказ о случившемся на том берегу. Отъезде, и, наверное, был отношении своих учеников оборвыш умеет читать и писать, это заставило его присмотреться к пареньку с интересом. Моего позволения потому и была тайной. «

Источник: http://blag-admin.ru/sys/temp/kak-narisovat-parallelepiped.html

Как сделать параллелепипед?

как нарисовать параллелепипед

Смотрите видео

как нарисовать параллелепипед

Процесс обучения можно сделать гораздо эффективнее и интереснее, если работать не только разумом, но и руками. Чтобы лучше понять, что такое параллелепипед, нужно сделать его картонную модель. Узнайте, как сделать параллелепипед, используя простые материалы, всегда имеющиеся под рукой. Для его изготовления понадобятся:

Итак, рассмотрим самый простой способ того, как сделать прямоугольный параллелепипед.

Делаем разметку листа

Для этого возьмите лист картона или бумаги, затем вертикальной линией разделите его пополам. Данная линия понадобится для того, чтобы было легче контролировать правильное построение деталей на листе. От нижнего края листа следует отступить 4 см. вверх и отложить по 6 см. влево и вправо от вертикальной оси. Теперь нужно соединить эти точки вертикальной линией. Она должна проходить параллельно основанию листа. Теперь от каждого края отрезка следует отложить по 8 см., и затем начертить верхнюю грань параллелограмма. Теперь следует еще три раза повторить данную операцию. Так должны получиться четыре параллелограмма, которые будут соединены между собой. Затем от самой верхней грани, которая является последней, следует отложить 1,5 см. вверх. Таким образом, получится клапан. С помощью него необходимо будет соединять друг с другом соседние стороны.

Если вы не знаете, как сделать параллелепипед из бумаги и боитесь ошибиться при его изготовлении, обязательно учтите, что одну из главных ролей играют четко проставленные размеры. Поэтому уделяйте этому необходимое внимание. Особенно нужно быть внимательным на заключительных этапах расставления размеров. На последнем этапе чертежа перед тем, как сделать прямоугольный параллелепипед, необходимо дорисовать квадратные стороны к боковым граням параллелограмма. Затем к каждой из таких сторон нужно будет дорисовать еще по три сантиметровых клапана. Старайтесь проводить все линии с первого раза, чтобы потом не запутаться в неправильных штрихах.

Собираем параллелепипед

Теперь начинается самое интересное во всем процессе создания геометрической фигуры – ее сборка. Для этого необходимо вырезать полученную заготовку параллелограмма. Затем следует согнуть ее по каждой из линий. Для большего удобства предварительно можно с нажимом провести по ним ручкой с внутренней стороны, за счет этого сгибы получатся ровнее. После этого нужно промазать клапаны клеем, заправить их внутрь фигуры и крепко приклеить в нужных местах. Теперь вы знаете, как сделать параллелепипед из картона или бумаги в домашних условиях. Как видите, в этом нет ничего сложного!

Наглядные примеры

Чтобы процесс создания модели был понятнее, следует изучить по схеме, как сделать параллелепипед:

как нарисовать параллелепипед.

Также для большей наглядности можно создать компьютерную развертку параллелепипеда. Посмотреть, как сделать параллелепипед, можно на видео ниже.

Источник: http://elhow.ru/ucheba/geometrija/stereometrija/kak-sdelat-parallelepiped

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *